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1. Introduction

Liquid instruments that involvepure volatility trades are potentially very useful for market
participants who have natural exposure to various volatilities in their balance sheet or trading
book. The classical option strategies discussed in Chapter 10 have serious drawbacks in this
respect. When a trader takes a position or hedges a risk, he or she expects that the random
movements of the underlying would have aknowneffect on the position. The underlying may
be random, but thepayoff functionof a well-defined contract or a position has to be known. Payoff
functions of mostclassicalvolatility strategies are not invariant to underlying risks, and most
volatility instruments turn out to beimperfecttools for isolating this risk. Even when traders’
anticipations come true, the trader may realize that the underlying volatility payoff functions
have changed due to movements inothervariables. Hence, classical volatility strategies cannot
provide satisfactory hedges for volatility exposures. The reason for this and possible solutions
are the topics of this chapter.

Traditional volatility trades used to involve buying and selling portfolios of call and put
options, straddles or strangles, and then possiblydelta-hedging these positions. But such volatil-
ity positions were notpure and this led to a search for volatility tools whose payoff function
would depend on the volatility riskonly. This chapter examines two of the pure volatility instru-
ments that were developed—variance and volatility swaps. They are interesting for at least
two reasons: First, volatility is an important risk for market practitioners, and ways of hedg-
ing and pricing such risks have to be understood. Second, the discussion of volatility swaps
constitutes a good example of the basic principles that need to be followed when devising new
instruments.

The chapter usesvarianceswaps instead of volatility swaps to conduct the discussion.
Although markets in general use the termvolatility, it is more appropriate to think in terms of
variance, the square of volatility. Variance is the second centered moment of a random variable,
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and it falls more naturally from the formulas used in this chapter. For example, volatility (i.e.,
standard deviation) instruments require convexity adjustments, whereas variance instruments in
general do not. Thus, when we talk aboutvega, for example, we refer tovariance vega. This is
the sensitivity of the option’s price with respect toσ2, notσ. In fact, in the heuristic discussion
in this chapter, the term volatility and variance are used interchangeably.

2. Volatility Positions

Volatility positions can be taken with the purpose of hedging a volatility exposure or speculating
on the future behavior of volatility. These positions require instruments that isolate volatility
risk as well as possible. To motivate the upcoming discussion, we introduce two examples that
illustrate traditional volatility positions.

2.1. Trading Volatility Term Structure

We have seen several examples for strategies associated with shifts in the interest rate term
structure. They were calledcurve steepeningor curve flatteningtrades. It is clear that similar
positions can be taken with respect tovolatility term structures as well. Volatilities traded in
markets come with different maturities. As with the interest rate term structure, we can buy one
“maturity” and sell another “maturity,” as the following example shows.1

Example:

[A] dealer said he was considering selling short-dated 25-delta euro puts/dollar calls
and buying a longer-dated straddle. A three-month straddle financed by the sale of two
25-delta one-month puts would have cost 3.9% in premium yesterday.

These volatility plays are attractive because the short-dated volatility is sold for more
than the cost of the longer-maturity options.

In this particular example, the anticipations of traders concern not the level of an asset price or
return, but, instead, the volatility associated with the price. Volatility over one interval is bought
using the funds generated by selling the volatility over a different interval.

Apparently, the traders think thatshort-datedeuro volatility will fall relative to the long-
dated euro volatility. The question is to what extent the positions taken will meet the traders’
needs,even when their anticipations are borne out. We will see that the payoff function of this
position is not invariant to changes in the underlying euro/dollar exchange rate.

2.2. Trading Volatility across Instruments

Our second example is from the interest rate sector and involves another “arbitrage” position
on volatility. The trader buys the volatility of one risk and sells a related volatility on a different
risk. This time, the volatilities in question do not belong to different time periods, but instead
are generated by differentinstruments.

1 The term “arbitrage” is used here in the sense financial markets use it and not in the sense of academic analysis.
The following arbitrage positions may have zero cost and have a relatively high probability of succeeding, but the gains
are by no means risk-free.
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Example:

Dealers are looking at the spreads between euro cap-floor straddle and swaption straddle
volatility to take advantage of a 5% volatility difference in the 7-year area. Proprietary
traders are selling a two-year cap-floor straddle starting in six years with vols close to
15%. The trade offers a good pick-up over the five-year swaption straddle with volatility
10%. This compares with a historical spread closer to 2%.

Cap-floors and swaptions are instruments on interest rates. There are both similarities and
differences between them. We will study them in more detail in the next chapter. Selling a
cap-floor straddle will basically beshortinterest rate volatility. In the example, the traders were
able to take this position at 15% volatility. On the other hand, buying a swaption amounts to a
long position on volatility. This was done at 10%, which gives avolatility spreadof about 5%.
The example states that the latter number has historically been around 2%. Hence, by selling the
spread the traders would benefit from a future narrowing of differences between the volatilities
of the two instruments.

This position’s payoff is not invariant to interest rate trajectories. Even when volatilities
behave as anticipated, the path followed by the level of interest rates may result in unexpected
volatility.2 The following discussion intends to clarify why such positions on volatility have
serious weaknesses and require meticulous risk management. We will consider pure volatility
positions later.

3. Invariance of Volatility Payoffs

In previous chapters, convexity was used to isolatevolatility as a risk. In Chapters 8 and 9, we
showed how to convert the volatility of an underlying into “cash,” and with that took the first
steps toward volatility engineering.

Using the methods discussed in Chapters 8 and 9, a trader can hedge and risk-manage
exposures with respect to volatility movements. Yet, these are positions influenced by variables
otherthan volatility. Consider a speculative position taken by aninvestor.

LetSt be a risk factor and suppose an investorbuysSt volatility at timet0 for a future period
denoted by[t1, T ], T being the expiration of the contract. As in every long position, this means
that the investor is anticipating an increase inrealizedvolatility during this period. If realized
volatility during [t1, T ] exceeds the volatility “purchased” at timet0, the investor will benefit.
Thus far this is not very different from other long positions. For example, a trader buys a stock
and benefits if the stock price goes up. He or she can buy a fixed receiver swap and benefit if
the swap value goes up (the swap rate goes down). Similarly, in our present case, we receive a
“fixed” volatility and benefit if the actual volatility exceeds this level.

By buying call or put options, straddles, or strangles, and thendelta-hedging these positions,
the trader will, in general, end up with a long position that benefits if the realized volatility
increases, as was shown in Chapters 8 and 9. Yet, there is one major difference between such
volatility positions and positions taken on other instruments such as stocks, swaps, forward
rate agreements (FRAs), and so on. Consider Figure 14-1a, that shows a long position on a
stock funded by a money market loan. As the stock price increases, the position benefits by the
amountSt1 − St0 . This potential payoff is known and dependsonlyon the level ofSt1 . In fact,

2 We must point out that there are differences between cap-floor volatilities and swaption volatilities. In fact, this
4% spread may very well be due to these factors. Also, such positions become even more complicated with the existence
of a volatility smile.



418 C H A P T E R 14. Tools for Volatility Engineering, Volatility Swaps, and Volatility Trading

Losses

Stock price

Invariant linear
payoff at T

St 1
St0

Gains
(a)

U-maturity bond 
at future date T

Yield

Price
(b)

FIGURE 14-1

it depends onSt linearly. In Figure14-1b we have ashort-dated discount bond position. As the
yield decreases, the position gains. Again, weknowhow much the position will be making or
losing, depending on the movements in the yield,yt, if convexity gains are negligible.

A volatility position taken via, say, straddles, is fundamentally different from this as the
payoff diagram will move depending on the path followed by variablesotherthan volatility. For
example, a change in (1) interest rates, (2) the underlying asset price, or (3) the level ofimplied
volatility may lead to different payoffs at the samerealizedvolatility level.

Variance (volatility) swaps, on the other hand, are pure volatility positions. Potential gains
or losses in positions taken with these instruments dependonly on what happens to realized
volatility until expiration. This chapter shows how volatility engineering can be used to set
up such contracts and to study their pricing and hedging. We begin with imperfect volatility
positions.

3.1. Imperfect Volatility Positions

In financial markets, avolatility positionis often interpreted to be a static position taken by buying
and selling straddles, or a dynamically maintained position that uses straddles or options. As
mentioned previously, these volatility positions are not the right way to price, hedge, or risk-
manage volatility exposure. In this section, we go into the reasons for this. We consider a simple
position that consists of a dynamically hedged single-call option.

3.1.1. A Dynamic Volatility Position

Consider a volatility exposure taken through a dynamically maintained position using a plain
vanilla call. To simplify the exposition, we impose the assumptions of the Black-Scholes world
where there are no dividends; the interest rate,r, and implied volatility,σ, are constant; there are
no transaction costs; and the underlying asset follows a geometric process. Then the arbitrage-
free value of a European callC(St, t) will be given by the Black-Scholes formula:

C(St, t) = St

∫ d1

−∞

1√
2π

e− 1
2 x2

dx − e−r(T−t)K

∫ d2

−∞

1√
2π

e− 1
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dx (1)

whereSt is the spot price, andK is the strike. Thedi, i = 1, 2, are given by

di =
log St

K ± 1
2σ2(T − t) + r(T − t)

σ
√

T − t
(2)
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For simplicity, and without loss of generality, we let

r = 0 (3)

This simplifies some expressions and makes the discussion easier to follow.3

Now consider the following simple experiment. A trader uses the Black-Scholes setting
to take a dynamically hedgedlong position on implied volatility. Implied volatility goes up.
Suppose the trader tracks the gains and losses of the position using the corresponding variance-
vega. What would be this trader’s possible gains in the following specific case? Consider the
following simple setup.

1. The parameters of the position are as follows:

Time to expiration= 0.1 (4)

K = St0 = 100 (5)

σ = 20% (6)

Initially we let t0 = 0.
2. The trader expects an increase in theimpliedvolatility from 20% to 30%, and considers

taking alongvolatility position.
3. Tobuyinto a volatility position, the trader borrows an amount equal to100 C(St, t), and

buys100 calls at timet0 with funding costr = 0.4

4. Next, the position isdelta-hedged by short-sellingCs units of the underlying per call to
obtain the familiar exposure shown in Figure 14-2.

In this example, there are about 1.2 months to the expiration of this option, the option is at-the-
money, and the initial implied volatility is 20%.

Gains

Losses

St0

St

FIGURE 14-2

3 This is a useful assumption for discussing volatility trading.

4 Remember that an identical position could be taken by buying puts. We take calls simply as an example.
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It turns out that in this environment, even when the trader’s anticipations are borne out, the
payoffs from the volatility position may vary significantly, depending on the path followed by
St. The implied volatility may move from20% to 30% as anticipated, but the position may not
pay the expected amount. The following example displays the related calculations.

Example:

We can calculate the relevant Greeks and payoff curves using Mathematica. First, we
obtain the initial price of the call as

C(100, t0) = 2.52 (7)

Multiplying by 100, the total position is worth$252. Then, we get the implied delta of
this position by first calculating theSt-derivative ofC(St, t) evaluated atSt0 = 100 ,
and then multiplying by 100:

100
(

∂C(St, t)
∂St

)
= 51.2 (8)

Hence, the position has+51 -delta. To hedge this exposure, the trader needs to short 51
units of the underlying and make the net delta exposure approximately equal to zero.

Next, we obtain the associated gamma and the (variance) vega of the position att0.
Using the given data, we get

Gamma= 100
[
∂2C(St, t)

∂S2
t

]
= 6.3 (9)

Variance vega= 100
[
∂C(St, t)

∂σ2

]
= 3, 152 (10)

The change in the option value, given a change in the (implied) variance, is given approxi-
mately by

100
[
∂C(St, t)

] ∼= (3, 152)∂σ2 (11)

This means that, everything else being constant, if the implied volatility risessuddenly
from 20% to 30%, the instantaneous change in the option price will depend on the
product of these numbers and is expected to be

100
[
∂C(St, t)

] ∼= 3,152(.09 − .04) (12)

= 157.6 (13)

In other words, the position is expected to gain about$158, if everything else remained
constant.

The point is that the trader was long implied volatility, expecting that it would increase, and
it did. So if the volatilitydoesgo up from 20% to 30%, is this trader guaranteed to gain the
$157.6? Not necessarily. Let us see why not.

Even in this simplified Black-Scholes world, the (variance)vegais a function ofSt, t, r, as
well asσ2. Everything else is not constant and theSt may follow any conceivable trajectory.
But, and this is the important point, whenSt changes, this in turn will make thevegachange as
well. The following table shows the possible values for variance-vegadepending on the value
assumed bySt, within this setting.5

5 The numbers in the table need to be multiplied by 100.
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St Vega

80 0.0558
90 7.4666

100 31.5234
110 10.6215
120 0.5415

Thus, if the expectations of the trader are fulfilled, the implied volatility increases to 30%,
but, at the same time, if the underlying price movesaway from the strike, say toSt1 = 80, the
same calculation will become approximately:

Vega(∂σ2) ∼= 5.6(.09 − .04) (14)

= 0.28 (15)

Hence, instead of an anticipated gain of$157.6, the trader could realize almost no gain at all. In
fact, if there are costs to maintaining the volatility position, the trader may end up losing money.
The reason is simple: asSt changes, the option’s sensitivity to implied volatility, namely the
vega, changes as well. It is a function ofSt. As a result, the outcome is very different from what
the trader was originally expecting.

For a more detailed view on how the position’s sensitivity moves whenSt changes, consider
Figure 14-3 where we plot the partial derivative:

100
∂ Variance vega

∂St
(16)

Under the present conditions, we see that as long asSt remains in the vicinity of the strikeK, the
trader has some exposure to volatility changes. But as soon asSt leaves the neighborhood ofK,
this exposure drops sharply. The trader may think he or she has a (variance) volatility position,
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but, in fact, the position costs money, and may not have any significant variance exposure as the
underlying changes right after the trade is put in place. Thus, such classical volatility positions
are imperfect ways of putting on volatility trades or hedging volatility exposures.

3.2. Volatility Hedging

The outcome of such volatility positions may also be unsatisfactory if these positions are main-
tained as a hedge against aconstantvolatility exposure in another instrument. According to
what was discussed, movements inSt can make the hedgedisappearalmost completely and the
trader may hold a naked volatility position in the end. An institution that has volatility exposure
may use a hedge only to realize that the hedge may beslipping over time due to movements
unrelated to volatility fluctuations.

Such slippage may occur for more reasons than just a change inSt. In reality, there are
also (1) smile effects, (2) interest rate effects, and (3) shifts in correlation parameters in some
instruments. Changes in these can also cause the classical volatility payoffs to move away from
initially perceived levels.

3.3. A Static Volatility Position

If a dynamic delta-neutral option position loses its exposure to movements inσ2 and, hence,
ceases to be useful as a hedge against volatility risk, do static positions fare better?

A classic position that has volatility exposure is buying (selling) ATM straddles. Using the
same numbers as above, Figure 14-4 shows the joint payoff of an ATM call and an ATM put
struck atK = 100. This position is made of two plain vanilla options and may suffer from a
similar defect. The following example discusses this in more detail.

9590
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Example:

As in the previous example, we choose the following numerical values:

St0 = 100, r = 0, T − t0 = .1 (17)

The initial volatility is 20%, which means that

σ2 = .04 (18)

We again look at the sensitivity of the position with respect to movements in some
variables of interest. We calculate the variance vega of the portfolio:

V (St, t) = 100{ATM Put+ ATM Call} (19)

by taking the partial:

Straddle vega= 100
∂V (St, t)

∂σ2 (20)

Then, we substitute the appropriate values ofSt, t, σ
2 in the formula. Doing this for

some values of interest forSt, we obtain the following sensitivity factors:

St Vega

80 11
90 1493

100 6304
110 2124
120 108

According to these numbers, ifSt stays at 100 and the volatility moves from 20% to
30%, the static position’s value increases approximately by

∂Straddle∼= 6,304(.09 − .04) (21)

= 315.2 (22)

As expected, this return is about twice as big as in the previous example. The straddle
hasmore sensitivity to volatility changes. But, the option’s responsiveness to volatility
movements is again not constant, and depends on factors that are external to what
happens to volatility. The table shows that ifSt moves to 80, then even when the trader’s
expectation is justified and volatility moves from 20% to 30%, the position’s mark-to-
market gains will go down to about 0.56.

Figure 14-5 shows the behavior of the straddle’s sensitivity with respect to implied volatility
for different values ofSt. We see that the volatility position is again not invariant to changes
in external variables. However, there is one major difference from the case of a dynamically
maintained portfolio. Static non-delta-hedged positions using straddles will benefit fromactual
(realized) movements inSt. For example, if theSt stays at 80 until expiration dateT , the put
leg of the straddle would pay 20 and the static volatility position would gain. This is regardless
of how thevegaof the position changed due to movements inSt over the interval[t0, T ].
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4. Pure Volatility Positions

The key to finding the right way to hedge volatility risk or to take positions in it is to isolate the
“volatility” completely, using existing liquid instruments. In other words, we have to construct
a syntheticsuch that the value of the synthetic changesonly when “volatility” changes. This
position should not be sensitive to variations in variables other than the underlying volatility.
The exposure should be invariant. Then, we can use the synthetic to take volatility exposures or
to hedge volatility risk. Such volatility instruments can be quite useful.

First, we know from Chapters 11 and 12 that by using options with different strikes we can
essentially createanypayoff that we like—if options with a broad range of strikes exist and if
markets are complete. Thus, we should, in principle, be able to create pure volatility instruments
by using judiciously selected option portfolios.

Second, if an option position’svegadrops suddenly onceSt moves away from the strike,
then, by combining options ofdifferentstrikes appropriately, we may be able to obtain aportfolio
of options whosevegais more or less insensitive to movements inSt. Heuristically speaking,
we can put together small portions of smoothcurvesto get a desired horizontalline.

When we follow these steps, we can create pure volatility instruments. Consider the plot
of the vegaof three plain vanilla European call options, two of which are out-of-the-money.
The options are identical in all respects, except for their strike. Figure 14-6 shows an example.
Threeσ2 sensitivity factors for the strikesK0 = 100, K1 = 110, K2 = 120 are plotted. Note
thateachvariancevegais very sensitive to movements inSt, as discussed earlier. Now, what
happens when we consider the portfolio made of thesumof all three calls? The sensitivity of
the portfolio,

V (St, t) = {C(St, t, K0) + C(St, t, K1) + C(St, t, K2)} (23)

again varies asSt changes, but less. So, the direction taken is correct except that the previous
portfolio did not optimally combine the three options. In fact, according to Figure 14-6, we
should have combined the options by using differentweightsthat depend on their respective
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strike price. The more out-of-the-money the option is, the higher should be its weight, and the
more it should be present in the portfolio.

Hence, consider the new portfolio where the weights are inversely proportional to the square
of the strikeK,

V (St, t) =
1

K2
0
C(St, t, K0) +

1
K2

1
C(St, t, K1) +

1
K2

2
C(St, t, K2) (24)

The variancevegaof this portfolio that uses the parameter values given earlier, is plotted in
Figure 14-7. Here, we consider a suitable0 < ε, and the range

K0 − ε < St < K2 + ε (25)

Figure 14-7 shows that thevegaof the portfolio is approximately constant over this range
whenSt changes. This suggests that more options with different strikes can be added to the
portfolio, weighting them by the corresponding strike prices. In the example below we show
these calculations.

Example:

Consider the portfolio

V (St, t) =
[

1
802 C(St, t, 80) +

1
902 C(St, t, 90) +

1
1002 C(St, t, 100) (26)

+
1

1102 C(St, t, 110) +
1

1202 C(St, t, 120)
]

(27)

This portfolio has an approximately constant vega for the range

80 − ε < St < 120 + ε (28)

By including additional options with different strikes in a similar fashion, we can lengthen
this section further.
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We have, in fact, found a way to create synthetics for volatility positions using a portfolio of
liquid options with varying strikes, where the portfolio options are weighted by their respective
strikes.

4.1. Practical Issues

In our attempt to obtain a pure volatility instrument, we have essentially followed the same
strategy that we have been using all along. We constructed asynthetic. But this time, instead of
matching the cash flows of an instrument, the synthetic had the purpose of matching a particular
sensitivity factor. It was put together so as to have a constant (variance)vega.

Once a constantvegaportfolio is found, the payoff of this portfolio can be expressed as an
approximately linear function ofσ2

V (σ2) = a0 + a1σ
2 + small (29)

with

a1 =
∂V (σ2, t)

∂σ2 (30)

as long asSt stays within the range

Smin = K0 < St < Kn = Smax (31)

Under these conditions, the volatility position will look like any other long (or short) position,
with a positive slopea1.

The portfolio with a constant (variance)vegacan be constructed using vanilla European
calls and puts. The rules concerning synthetics discussed earlier apply here also. It is important
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that elements of the synthetic be liquid; therefore liquid calls and puts have to be selected. The
previous discussion referred only to calls. Practical applications of the procedure involve puts
as well. This brings us to two somewhat complicated issues. The first has to do with the smile
effect. The second concerns liquidity.

4.1.1. The Smile Effect

Suppose we form a portfolio at timet0 that has a constantvegaas long asSt stays in a reason-
able range

Smin < St < Smax (32)

Under these conditions, the portfolio consists of options with different “moneyness” properties,
and the volatility parameter in the option pricing formulas may depend onK if there is a volatility
smile. In general, asK decreases, the impliedσ(K) would increase for constantSt. Under these
conditions, the trader needs to accurately determine the smile and the way to model it before
the portfolio is formed.

4.1.2. Liquidity Problems

From the preceding it follows that we need to select out-of-the-money options for the synthetic
since they are more liquid. But as time passes, the moneyness of these options changes and
this affects their liquidity. Those options that become in-the-money are now less liquid. Other
options that were not originally included in the synthetic become more liquid. Even though the
replicating portfolio was static, the illiquidity of the constituent options may become a drawback
in case the position needs to be unwound.

5. Volatility Swaps

One instrument that has invariant exposure to fluctuations in (realized) volatility is thevolatility
swap. In this section, we introduce this concept and in the next, we provide a simple framework
for studying it.

A variance swap is, in many ways, just like any other swap. The parties exchangefloating
risk against a risk fixed at the contract origination. In this case, what is being swapped is not an
interest rate or a return on an equity instrument, but the volatilities that correspond to various
risk factors.

In the following section we move to a more technical discussion of volatility (variance)
swaps. However, we emphasize again that the discussion will proceed using the variance rather
than the volatility as the underlying.

5.1. A Framework for Volatility Swaps

LetSt be the underlying price. The time-T2 payoffV (T1, T2) of a variance swap with a notional
amount,N , is given by the following:

V (T1, T2) =
[
σ2

T1,T2
− F 2

t0

]
(T2 − T1)N (33)

whereσT1 , T2 is therealizedvolatility rate ofSt during the intervalt ∈ [T1, T2], with t < T1 <
T2. It is similar to a “floating” rate, and will be observed only when timeT2 arrives. TheFt0 is
the “fixed” St volatility rate that is quoted at timet0 by markets. This has to be multiplied by
(T2 − T1) to get the appropriate volatility for the contract period.N is the notional amount that
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needs to be determined at contract initiation. At timet0, theV (T1, T2) is unknown. The swap
is set so that the time-t0 “expected value” of the payoff, denoted byV (t0, T1, T2) is zero. At
initiation, no cash changes hands:

V (t0, T1, T2) = 0 (34)

Thus, variance swaps are similar to a vanilla swap in that a “floating”σ2
T1,T2

(T2 − T1)N is
received against a “fixed”(T2 − T1)F 2

t0N .
The cash flows implied by a variance swap are shown in Figure 14-8. The contract is initiated

at timet0, and the start date isT1. It matures atT2. The “floating” volatility (variance) is the
total volatility (variance) ofSt during the entire period[T1, T2]. Ft0 has the subscriptt0, and,
hence, has to be determined at timet0. We look at the two legs of the swap in more detail.

5.1.1. Floating Leg

Volatility positions need to be taken with respect to a well-defined time interval. After all, the
volatility rate is like an interest rate: It is defined for specific time interval. Thus, we subdivide
the period[T1, T2] into equal subintervals, say, days:

T1 = t1 < t2 . . . < tn = T2 (35)

with

ti − ti−1 = δ (36)

and then define the realized variance for periodδ as

σ2
ti

δ =
[
Sti − Sti−1

Sti−1

− μδ

]2

(37)

wherei = 1, . . . , n.6 Here,μ is the expected rate of change ofSt during a year. This parameter
can be set equal to zero or any other estimated mean. Regardless of the value chosen,μ needs to

6 Of course, there are many other ways to define these “short-period” volatilities. Some of the recent research uses
the estimated variance of daily price changes during a trading day, for example.
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be carefully defined in the contract. Ifμ is zero, then the right-hand side is simply the squared
returns during intervals of lengthδ.

Adding the marginal variances for successive intervals,σ2
T1,T2

is equal to

(
σ2

T1,T2

)
(T2 − T1) =

n∑
i=1

[
Sti

− Sti−1

Sti

− μδ

]2

(38)

Thus,σ2
T1,T2

represents the realized percentage variance of theSt during the interval [T1, T2].
If the intervals become smaller and smaller,δ → 0, the last expression can be written as

(
σ2

T1,T2

)
(T2 − T1) =

∫ T2

T1

[
1
St

dSt − μdt

]2

(39)

=
∫ T2

T1

σ2
t dt (40)

This formula defines the realized volatility (variance). It is a random variable at timet0, and can
be viewed as the floating leg of the swap. Obviously, such floating volatilities can be defined
for any interval in the future and can then be exchanged against a “fixed” leg.

5.1.2. Determining the Fixed Volatility

Determining the fixed volatility,Ft0 , will give the fair value of the variance swap at timet0.
How do we obtain the numerical value ofFt0? We start by noting that the variance swap is
designedso that its fair value at timet0 is equal to zero. Accordingly, theF 2

t0 is that number
(variance), which makes the fair value of the swap equal zero. This is a basic principle used
throughout the text and it applies here as well.

We use the fundamental theorem of asset pricing and try to find a proper arbitrage-free
measureP̃ such that

EP̃
t0

[
σ2

T1,T2
− F 2

t0

]
(T2 − T1)N = 0 (41)

What could this measurẽP be? Suppose markets are complete.
We assume that the continuously compounded risk-free spot rater is constant. The random

processσ2
T1,T2

is, then, a nonlinear function ofSu, T1 ≤ u ≤ T2, only:

σ2
T1,T2

(T2 − T1) =
∫ T2

T1

[
1
St

dSt − μdt

]2

(42)

Under some conditions, we can use the normalization by the money market account and letP̃ be
the risk-neutral measure.7 Then, from equation (41), taking the expectation inside the brackets
and arranging, we get

F 2
t0 = EP̃

t0

[
σ2

T1,T2

]
(43)

This leads to the pricing formula

F 2
t0 =

1
T2 − T1

EP̃
t0

[∫ T2

T1

[
1
St

dSt − μdt

]2
]

(44)

7 We remind the reader that this contract will be settled at timeT2.
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Therefore, to determineF 2
t0 we need to evaluate the expectation under the measureP̃ of the

integral ofσ2
t . The discrete time equivalent of this is given by

F 2
t0 =

1
T2 − T1

EP̃
t0

[
n∑

i=1

[
Sti

− Sti−1

Sti−1

− μδ

]2
]

(45)

Given a proper arbitrage-free measure, it is not difficult to evaluate this expression. One can use
Monte Carlo or tree methods to do this once the arbitrage-free dynamics is specified.

5.2. A Replicating Portfolio

The representation using the risk-neutral measure can be used for pricing. But how would
we hedge a variance swap? To create the right hedge, we need to find a replicating portfolio.
We discuss this issue using an alternative setup. This alternative has the side advantage of the
financial engineering interpretation of some mathematical tools being clearly displayed. The
following model starts with Black-Scholes assumptions.

The trick in hedging the variance swap lies in isolatingσ2
T1,T2

in terms of observable (traded)
quantities. This can be done by obtaining a proper synthetic. Assume a diffusion process forSt:

dSt = μ(St, t)Stdt + σ(St, t)StdWt t ∈ [0, ∞) (46)

whereWt is a Wiener process defined under the probabilityP̃ . The diffusion parameterσ(St, t)
is called local volatility. Now consider the nonlinear transformation:

Zt = f(St) = log(St) (47)

We apply Ito’s Lemma to set up the dynamics (i.e., the SDE) for this new processZt:

dZt =
∂f(St)

∂St
dSt +

1
2

∂2f(St)
∂S2

t

σ(St, t)2S2
t dt t ∈ [0, ∞) (48)

which gives

d log(St) =
1
St

μ(St, t)Stdt − 1
2S2

t

σ(St, t)2S2
t dt + σ(St, t)dWt t ∈ [0, ∞) (49)

where theS2
t term cancels out on the right-hand side. Collecting terms, we obtain

d log(St) =
[
μ(St, t) − 1

2
σ(St, t)2

]
dt + σ(St, t)dWt (50)

Notice an interesting result. The dynamics fordSt/St andd log(St) are almost the sameexcept
for the factor involvingσ(St, t)2dt. This means that we can subtract the two equations from
each other and obtain

dSt

St
− d log(St) =

1
2
σ(St, t)2dt t ∈ [0, ∞) (51)

This operation hasisolatedthe instantaneous percentage local volatility on the right-hand side.
But, what we need for the variance swap is theintegralof this term. Integrating both sides we get

∫ T2

T1

[
1
St

dSt − d log(St)
]

=
1
2

∫ T2

T1

σ(St, t)2dt (52)
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We now take the integral on the left-hand side,∫ T2

T1

d log(St) = log(ST2) − log(ST1) (53)

We use this and rearrange to obtain the result:

2

[∫ T2

T1

1
St

dSt

]
− 2 log

(
ST2

ST1

)
=

∫ T2

T1

σ(St, t)2dt (54)

We have succeeded in isolating the percentage total variance for the period[T1, T2] on the
right-hand side. Given thatSt is an asset that trades, the expression on the left-hand side replicates
this variance.

5.3. The Hedge

The interpretation of the left-hand side in equation (54) is quite interesting. It will ultimately
provide a hedge for the variance swap. In fact, the integral in the expression is a good example
of what Ito integrals often mean in modern finance. Consider∫ T2

T1

1
St

dSt (55)

How do we interpret this expression?
Suppose we would like to maintain a long position that is made of1

St
units ofSt held during

each infinitesimally short interval of sizedt, and for allt. In other words, we purchase1St
units

of the underlying at timet and hold them during an infinitesimal intervaldt. Given that at time
t, St is observed, this position can easily be taken. For example, ifSt = 100, we can buy 0.01
units ofSt at a total cost of 1 dollar. Then, as time passes,St will change bydSt and the position
will gain or losedSt dollars for every unit purchased. We readjust the portfolio, since theSt+dt

will presumably be different, and the portfolio needs to be1St+dt
units long.

The resulting gains or losses of such portfolios during an infinitesimally small intervaldt
are given by the expression8

1
St

(St+dt − St) =
1
St

dSt (56)

Proceeding in a similar fashion for all subsequent intervalsdt, over the entire period[T1, T2],
the gains and losses of such a dynamically maintained portfolio add up to∫ T2

T1

1
St

dSt (57)

The integral, therefore, represents thetrading gains or lossesof a dynamically maintained
portfolio.9

8 The use ofdt here is heuristic.

9 In fact, this interpretation can be generalized quite a bit. Often the stochastic integrals in finance have a structure
such as ∫ T2

T1

f(St)dSt

These can be interpreted as trading gains or losses ofdynamicallymaintainingf(St) units of the asset that have priceSt.



432 C H A P T E R 14. Tools for Volatility Engineering, Volatility Swaps, and Volatility Trading

The second integral on the left-hand side of equation (52)

∫ T2

T1

d log(St) = log(ST2) − log(ST1) (58)

is taken with respect to timet, and is a standard integral. It can be interpreted as astaticposition.
In this case, the integral is the payoff of a contract written at timeT1, which pays, at timeT2,
the difference between the unknownlog(ST2) and the knownlog(ST1). This is known as alog
contract. The long and short positions in this contract are logarithmic functions ofSt.

In a sense, the left-hand side of equation (54) provides a hedge of the variance contract. If
the trader is short the variance swap, he or she would also maintain a dynamically adjusted long
position onSt and be short a static log contract. This assumes complete markets.

6. Some Uses of the Contract

The variance (volatility) swaps are clearly useful for taking positions with volatility exposure
and hedging. But, each time a new market is born, there are usually further developments beyond
the immediate uses. We briefly mention some further applications of the notions developed in
this chapter.

First of all, theF 2
t , which is the fixed leg of the variance swap, can be used as a benchmark

in creating new products. It is important to realize, however, that this price was obtained using
the risk-neutral measure and that isnot necessarily an unbiased forecast of future volatility
(variance) for the period[T1, T2]. Just like the FRA market prices, theFt will include a risk
premium. Still, it is the proper price on which to write volatility options.

The pricing of the variance swap does not necessarily give a volatility that will equal the
implied volatility for the same period. Implied volatility comes with a smile and this may
introduce another wedge betweenFt and the ATM volatility.

Finally, theF 2
t should be a good indicator for risk-managing volatility exposures and also

options books.
The following reading illustrates the development of this market.

Example:

A striking illustration of the increasing awareness of volatility among the hedge fund
community is the birth of pure volatility funds. But just as notable as the introduction of
specialist volatility investment vehicles is the growing realization among regular direc-
tional hedge funds of the need to manage their volatility positions.

“As people become aware of volatility, they are increasingly looking to hedge or trade
the vega,” said a participant from a directional hedge fund.

Convertible arbitrage funds have also been getting in on the act as they come to fully
understand the concept of vega. Volatility is a major factor in the pricing of convertible
bonds.

Investment banks have responded to an increased hedge fund interest in volatility by
providing new straightforward volatility structures.

The best example of the new breed of simple volatility products is the volatility swap.
These are cash-settled forward bets on market volatility which allow the investor to set
up a pure volatility trade with a dealer. When the customer sells volatility, the dealer
agrees to pay a fixed volatility rate on a notional amount for a certain period. In return,
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the investor agrees to pay the annualized realized volatility for the S&P500 for the life
of the swap.

At maturity, the two income streams are netted and the counterparties exchange the
difference in whichever direction is appropriate. This type of product encourages hedge
fund volatility activity because it offers them a simpler method of trading vega.

Normal volatility trades, such as caps and floors, leave investors exposed to underlying
price risk. As the market moves towards the strike price, the gamma effect in hedging the
position may cause the investor to lose more on the hedging than he makes on the volatility
rate. Careful book management is necessary to control this risk. Most directional hedge
funds have so many things to look at that they haven’t always got the time, inclination or
understanding to trade volatility using the traditional products. “Volatility swaps turn
vega into something that people can easily grasp and manage,” said one directional
hedge fund commentator. (IFR, December 31, 1998)

Volatility trading, volatility hedging, and arbitraging all fall within a sector that is still in the
process of development. In the next chapter we will see some new difficulties and new positions
associated with them.

7. Which Volatility?

This chapter dealt withfour notions of volatility. These must be summarized and distinguished
clearly before we move on the discussion of the volatility smile in the next chapter.

When market professionals use the term “volatility,” chances are they refer to Black-Schole’s
impliedvolatility. Otherwise, they will use terms such asrealizedor historicalvolatility. Local
volatility andvariance swap volatilityare also part of the jargon. Finally,cap-floor volatilityand
swaption volatilityare standard terms in financial markets.

Implied volatility is simply the value ofσ that one would plug into the Black-Scholes
formula to obtain the fair market value of a plain vanilla option as observed in the markets. For
this reason, it is more correct to call itBlack-Scholes implied volor Black volatility in the case
of interest rate derivatives. It is quite conceivable for a professional to use a different formula to
price options, and the volatility implied by this formula would naturally be different. The term
implied volatility is, thus, a formula-dependent variable.

We can attach the following definitions to the term “volatility.”

• First, there is the class ofrealized volatilities. This is closest to what is contained in
statistics courses. In this case, there is an observed or to-be-observed data set, a “sample,”
{x1, . . . xn}, which can be regarded as a realization of a possibly vector-stochastic
process,xt, defined under some real-world probabilityP . The processxt has a second
moment

σt =
√

EP
t

[
(xt − EP

t [xt])2
]

(59)

We can devise an estimator to estimate thisσt. For example, we can let

σ̂t =

√∑m
i=0(xt−i − x̄m

t )2

m
(60)

wherex̄t
m is them-period sample mean:

x̄m
t =

∑m
i=0 xt−i

m
(61)
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Such volatilities measure the actual real-world fluctuations in asset prices or risk factors.
One example of the use of this volatility concept was shown in this chapter. Theσ2

t

defined earlier represented the floating leg of the variance swap discussed here.
• The next class isimplied volatility.10 There is an observed market price. The market

practitioner has a pricing formula (e.g., Black-Scholes) or procedure (e.g., implied trees)
for this price. Then, implied volatility is that “volatility” number, or series of numbers,
which must be plugged into the formula in order to recover the fair market price. Thus,
let F (St, t, r, σt, T ) be the Black-Scholes price for a European option written on the
underlyingSt, with interest ratesr and expirationT. At time t, σt represents the implied
volatility if we solve the following equation (nonlinearly) forσt:

F (St, t, r, σt, T ) = Observed price (62)

This implied volatility may differ from the realized volatility significantly, since it incor-
porates anyadjustmentsthat the trader feels he or she should make to expected realized
volatility. Implied volatility may be systematically different than realized volatility if
volatility is stochasticand if a risk premiumneeds to be added to volatility quotes.
Violations of Black-Scholes assumptions may also cause such a divergence.

• Local volatility is used to represent the functionσ(.) in a stochastic differential equation:

dS(t) = μ(S, t)dt + σ(S, t)StdWt t ∈ [0, ∞) (63)

However, local volatility has a more specific meaning. Suppose options onSt trade
in all strikes,K, and expirationsT , and that the associated arbitrage-free prices,{C(St, t,
K, T )}, are observed for allK, T . Then the functionσ(St, t) is the local volatility, if
the corresponding SDE successfully replicates all these observed prices either through
a Monte Carlo or PDE pricing method.

In other words,local volatility is a concept associated with calibration exercises.
It can be regarded as a generalization of Black-Scholes implied volatility. The implied
volatility replicates asingleobserved price through the Black-Scholes formula. The local
volatility, on the other hand, replicates an entiresurfaceof options indexed byK and
T , through a pricing method. As a result, we get avolatility surfaceindexed byK and
T , instead of a single number as in the case of Black-Scholes implied volatility.

• Finally, in this chapter we encountered thevariance swap volatility. This referred to the
expectation of the average future squared deviations. But, because the expectation used
the risk-neutral measure, it is different from real-world volatility.

Discussions of the volatility smile relate to these volatility notions. The implied volatility is
obviously of interest to most traders but it cannot exist independently of realized volatility. It
is natural to expect a close relationship between the two concepts. Also, as volatility trading
develops, more and more instruments are written that use the realized volatility as some kind of
underlying risk factor for creating new products. The variance swap was only one example.

8. Conclusions

This chapter provided a brief introduction to a sector that may, in the future, play an even more
significant role in financial market strategies. Our purpose was to show how we can isolate the

10 This definition could be a little misleading since these days most traders quote volatility directly and then calculate
the market price of options implied by this volatility quote.
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volatility of a risk factor from other related risks, and then construct instruments that can be
used to trade it. An important point should be emphasized here. The introductory discussion
contained in this chapter deals with the case where the volatility parameter is a function of time
and the underlying price only. These methods have to be modified for more complex volatility
specifications.

Suggested Reading

Rebonato(2000) and (2002) are good places to start getting acquainted with the various notions
of volatility. Rebonato(2002) deals with the Libor market model and puts volatility in this context
as well. Some of the material in this chapter comes directly fromDemeterfi et al.(1999), where
the reader will find proper references to the literature as well. The important paper byDupire
(1992) and the literature it generated can be consulted for local volatility.
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Exercises

1. Read the quote carefully and describe how you would take this position using volatility
swaps. Be precise about the parameters of these swaps.

(a) How would you price this position? What does pricing mean in this context
anyway? Which price are we trying to determine and write in the contract?

(b) In particular, do you need the correlations between the two markets?
(c) Do you need to know the smile before you sell the position?
(d) Discuss the risks involved in this volatility position.

Volatility Swaps

A bank is recommending a trade in which investors can take advantage of
the wide differential between Nasdaq 100 and S&P500 longer-dated implied
volatilities.

Two-year implied volatility on the Nasdaq 100 was last week near all-time
highs, at around 45.7%, but the tumult in tech stocks over the last several
years is largely played out, said [a] global head of equity derivatives strategy
in New York. The tech stock boom appears to be over, as does the most eye-
popping part of the downturn, he added. While there will be selling pressure
on tech companies over the next several quarters, a dramatic sell-off similar
to what the market has seen over the last six months is unlikely.

The bank recommends entering a volatility swap on the differential between
the Nasdaq and the S&P, where the investor receives a payout if the realized
volatility in two years is less than about 21%, the approximate differential
last week between the at-the-money forward two-year implied volatilities on
the indices. The investor profits here if, in two years, the realized two-year
volatility for the Nasdaq has fallen relative to the equivalent volatility on
the S&P.

It might make sense just to sell Nasdaq vol, said [the trader], but it’s better
to put on a relative value trade with the Nasdaq and S&P to help reduce the
volatility beta in the Nasdaq position. In other words, if there is a total market
meltdown, tech stocks and the market as a whole will see higher implied voles.
But volatility on the S&P500, which represents stocks in a broader array of
sectors, is likely to increase substantially, while volatility on the Nasdaq is
already close to all-time highs. A relative value trade where the investor takes
a view on the differential between the realized volatility in two years time on
the two indices allows the investor to profit from a fall in Nasdaq volatility
relative to the S&P.

The two-year sector is a good place to look at this differential, said [the trader].
Two years is enough time for the current market turmoil, particularly in the
technology sector, to play itself out, and the differential between two-year
implied voles, at about 22% last week, is near all-time high levels. Since 1990,
the realized volatility differential has tended to be closer to 10.7% over long
periods of time.

[The trader] noted that there are other means of putting on this trade, such
as selling two-year at-the-money forward straddles on Nasdaq volatility and
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buying two-year at-the-money forward straddles on S&P vol. (Derivatives
Week, October 30, 2000)

2. The following reading deals with another example of how spread positions on volatility
can be taken. Yet, of interest here are further aspects of volatility positions. In fact, the
episode is an example of the use of knock-in and knock-out options in volatility positions.

(a) Suppose the investor sells short-dated (one-month) volatility and buys
six-month volatility. In what sense is this a naked volatility position? What are
the risks? Explain using volatility swaps as an underlying instrument.

(b) Explain how a one-month break-out clause can hedge this situation.
(c) How would the straddles gain value when the additional premium is triggered?
(d) What are the risks, if any, of the position with break-out clauses?
(e) Is this a pure volatility position?

Sterling volatility is peaking ahead of the introduction of the euro next year.
A bank suggests the following strategy to take advantage of the highly inverted
volatility curve. Sterling will not join the euro in January and the market
expects reduced sterling positions. This view has pushed up one-month ster-
ling/Deutsche mark vols to levels of 12.6% early last week. In contrast, six-
month vols are languishing at under 9.2%. This suggests selling short-dated
vol and buying six-month vols. Customers can buy a six-month straddle with
a one-month break-out clause added to replicate a short volatility position in
the one-month maturity. This way they don’t have a naked volatility position.
(Based on an article in Derivatives Week.)


